Given a sorted array of integers nums and integer values a, b and c. Apply a function of the form f(x) = ax2 + bx + c to each element x in the array.
The returned array must be in sorted order.
Expected time complexity: O(n)
Example:
nums = [-4, -2, 2, 4], a = 1, b = 3, c = 5,Result: [3, 9, 15, 33]nums = [-4, -2, 2, 4], a = -1, b = 3, c = 5Result: [-23, -5, 1, 7]
Credits:
Special thanks to for adding this problem and creating all test cases.
这道题给了我们一个数组,又给了我们一个抛物线的三个系数,让我们求带入抛物线方程后求出的数组成的有序数组。那么我们首先来看O(nlgn)的解法,这个解法没啥可说的,就是每个算出来再排序,这里我们用了最小堆来帮助我们排序,参见代码如下:
解法一:
class Solution {public: vector sortTransformedArray(vector & nums, int a, int b, int c) { vector res; priority_queue
, greater
> q; for (auto d : nums) { q.push(a * d * d + b * d + c); } while (!q.empty()) { res.push_back(q.top()); q.pop(); } return res; }};
当a>0,说明两端的值比中间的值大,那么此时我们从结果res后往前填数,用两个指针分别指向nums数组的开头和结尾,指向的两个数就是抛物线两端的数,将它们之中较大的数先存入res的末尾,然后指针向中间移,重复比较过程,直到把res都填满。
当a<0,说明两端的值比中间的小,那么我们从res的前面往后填,用两个指针分别指向nums数组的开头和结尾,指向的两个数就是抛物线两端的数,将它们之中较小的数先存入res的开头,然后指针向中间移,重复比较过程,直到把res都填满。
class Solution {public: vector sortTransformedArray(vector & nums, int a, int b, int c) { int n = nums.size(), i = 0, j = n - 1; vector res(n); int idx = a >= 0 ? n - 1 : 0; while (i <= j) { if (a >= 0) { res[idx--] = cal(nums[i], a, b, c) >= cal(nums[j], a, b, c) ? cal(nums[i++], a, b, c) : cal(nums[j--], a, b, c); } else { res[idx++] = cal(nums[i], a, b, c) >= cal(nums[j], a, b, c) ? cal(nums[j--], a, b, c) : cal(nums[i++], a, b, c); } } return res; } int cal(int x, int a, int b, int c) { return a * x * x + b * x + c; }};